
International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

Volume 30, Issue 04, Quarter 04 (Oct-Nov-Dec 2018)

ISSN (Online): 2347-601X

www.ijemhs.com

354

ATTILA: A Simulator for Modern GPU Architectures

Vidya Mohanty

 Aryan Institute of Engineering & Technology, Bhubaneswar

Abstract

The present work presents a cycle-level execution-driven

simulator for modern GPU architectures. We discuss the sim-

ulation model used for our GPU simulator, based in the con-

cept of boxes and signals, and the relation between the timing

simulator and the functional emulator. The simulation model

we use helps to increase the accuracy and reduce the number

of errors in the timing simulator while allowing for an easy

extensibility of the simulated GPU architecture. We also intro-

duce the OpenGL framework used to feed the simulator with

traces from real applications (UT2004, Doom3) and a per-

formance debugging tool (Signal Trace Visualizer). The pre-

sented ATTILA simulator supports the simulation of a whole

range of GPU configurations and architectures, from the

embedded segment to the high end PC segment, supporting

both the unified and non unified shader architectural models.

1. Introduction

We have developed a generic GPU microarchitecture con-

taining most of the advanced hardware features seen in today’s

major GPUs. We have liberally blended techniques from all

major vendors and the research literature [26], producing a

microarchitecture that closely tracks today’s GPUs without

being an exact replica of any particular product available or

announced. We have then implemented this microarchitecture

in full detail in a cycle-level, execution-driven simulator. In

order to feed this simulator, we have implemented an OpenGL

framework comprised by a library, a driver and a capture tool.

The OpenGL framework allows to run traces from modern

graphic applications (i.e. games) like UT2004 and Doom3 in

our simulator. Our microarchitecture and simulator are versa-

tile and highly configurable and can be used to evaluate multi-

ple configurations: high-end PC GPUs [1] to embedded GPUs

[2] for mobile systems.

The remainder of this paper is organized as follows: Sec-

tion 2 describes the rendering algorithm and the microarchi-

tecture of a GPU as implemented by the ATTILA simulator.

Section 3 discusses the simulation model and the structure of

the different simulator components. Section 4 introduces our

OpenGL framework, used to feed the simulator with traces

from real graphic applications. In section 5 a simple experi-

mental test case is presented. Finally sections 6 and 7 present

related work, conclusions and future work.

2. ATTILA Architecture

 The 3D Rendering Algorithm

The rendering algorithm implemented in modern GPUs is

based on the rasterization of shaded polygons on a color

buffer, using a Z buffer to solve the visibility problem. GPUs

are based on the rasterization of triangles because the simplic-

ity and efficiency of hardware triangle rasterizers. Therefore

all surfaces forming the scene to render are transformed into

triangles (tesselation) in an offline preprocess. Coplanar four

vertex polygons, named quads in OpenGL, are supported as

two triangles. Some GPUs also support the tesselation of high

order surfaces (Bezier, N-Patches) using specific hardware.

The rendered image, stored in the framebuffer, a 2D

matrix array, contains the properties of all the visible parts in

the rendered scene from the view point of a defined observer.

In most cases the stored property is the surface color. The

properties of the rendered surfaces are calculated at two

points: at the vertices of the triangles that form the surface and

at the fragments generated by the rasterization of those trian-

gles. Early graphic processors performed most of the compu-

tation, mostly related to the illumination from a number of

light sources, at the vertex level with the fragment properties

being linearly interpolated from the vertex properties (Goraud

shading). With the modern GPUs high fragment processing

power most of those computations have moved to the frag-

ment level (Phong shading). At the vertex level remain the

transformations related to geometry and physics.

The 3D rendering algorithm can be defined using the

stream programming model [11] in terms of streams and ker-

nels. The input stream is a list of vertices and their input prop-

erties (position, color, texture coordinates), named attributes in

OpenGL. The vertex stream, named batch in OpenGL, can be

indexed to enable reusing the computation of vertices from

adjacent triangles. The input vertex stream is fed into a shader

kernel executing the vertex shader: a program that transforms

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

Volume 30, Issue 04, Quarter 04 (Oct-Nov-Dec 2018)

ISSN (Online): 2347-601X

www.ijemhs.com

355

(coordinate system convertion, lighting, etc.) the properties of

the input vertices. The transformed vertex stream is feed into

a kernel that assembles vertices as triangles. This triangle

stream passes through geometry related kernels (clipping, face

culling, triangle setup) that generate or remove triangles and

prepare the triangle stream to be processed by the rasterizer.

The rasterizer or fragment generator kernel pieces the triangles

into small fragments equivalent to a pixel (an element in the

framebuffer) with fragment properties copied or linearly inter-

polated from the input triangle vertex properties.

The fragment stream is then processed by a number of

fragment kernels that remove non visible fragments and com-

pute the final fragment attributes. The fragment test kernels

usually implemented in the rendering algorithm are: scissor

test, alpha test, stencil test and z test . Scissor removes trian-

gles outside a defined rectangle window. Alpha removes

transparent fragments based on a defined constant and the

fragment color alpha component. Stencil removes fragments

based on a per pixel mask, the stencil buffer. The stencil test is

performed comparing a defined reference value against the

value stored for the corresponding fragment pixel. The per

pixel stencil value is optionally updated based on the result of

the stencil and z tests applying different update functions

(increment, decrement, etc.). The depth (z) test compares the

fragment depth against the depth value of the last fragment

drawn over the pixel, as stored in the depth (z) buffer.

Depending on the selected compare function fragments behind

(smaller z), ahead (larger z) or at the same depth (equal z) are

allowed to flow to the next procesing kernels or discarded.

Final fragment properties are computed by a shader kernel

similar to the vertex shader kernel. Fragment shaders (and in

recent implementations vertex shaders) are allowed to use

non-streaming data, reading from one, two or three dimen-

sional buffers named textures, for their computations.

The processing order of the test and fragment shader ker-

nels isn’t fixed. Scissor test can be performed before shading,

alpha test must be performed after shading. Stencil and depth

can be performed before shading if the fragment depth isn’t

modified by the fragment shader and alpha test is disabled.

3. Conclusions

We have presented an highly configurable simulator for a

modern GPU architecture that is implemented using the box

and signal simulation model. The simulated architecture

implements the unified shader architecture that will be present

in future GPUs. We have developed an OpenGL framework

that allows to capture and simulate trace from real graphic

applications, games, as Doom3 and UT2004. The simulator

generates a large amount of statistic data and data flow infor-

mation that can be used to evaluate different microarchitecture

implementations for all the pipeline stages.

We will increase OpenGL framework to support more

games. We are also working on a backend for the glSlang

compiler. In the future we will start a Direct3D framework.

We plan to upgrade the shader to Shader Model 3.0 and glS-

lang functionality level implementing branching and predica-

tion. We will implement additional features from modern

GPUs: texture compression methods [25], render to texture,

floating point buffers and textures; color compression; double

rate Z and stencil; double sided stencil; supersampling and

multisampling based antialiasing [23].

International Journal of Engineering, Management, Humanities and Social Sciences Paradigms (IJEMHS)

Volume 30, Issue 04, Quarter 04 (Oct-Nov-Dec 2018)

ISSN (Online): 2347-601X

www.ijemhs.com

356

References

[1] Victor Moya, Carlos Gonzalez, Jordi Roca, et al. Shader Perform-

ance Analysis on a Modern GPU Architecture. Micro 38, 2005.

[2] Victor Moya, Carlos Gonzalez, Jordi Roca, et al. A Single (Uni-

fied) Shader GPU Microarchitecture for Embedded Systems. Hi-

PEAC 2005.

[3] Erik Lindholm, et al. An User Programmable Vertex Engine.

ACM SIGGRAPH 2001.

[4] WO02103638: Programmable Pixel Shading Architecture,

December 27, 2002, NVIDIA CORP.

[5] Beyond3D Graphic Hardware and Technical Forums. http://

www.beyond3d.com

[6] DIRECTXDEV mail list. http://discuss.microsoft.com/archives/

directxdev.html

[7] T. Aila, V. Miettinen and P. Nordlund. Delay streams for graphics

hardware. ACM Transactions on Graphics, 2003.

[8] T. Akenine-Möller and J. Ström Graphics for the masses: a hard-

ware rasterization architecture for mobile phones. ACM Transaction

on Graphics, 2003.

[9] Stanford University GLSim & GLTrace. http://graphics.stan-

ford.edu/courses/cs448a-01-fall/glsim.html

[10] J. W. Sheaffer, et al. A Flexible Simulation Framework for

Graphics Architectures. Graphics Hardware 2004.

[11] J. Owens, B. Khailany, et ak. Comparing Reyes and OpenGL on

a Stream Architecture. Graphics Hardware 2002.

[12] T. J. Purcell, I. Buck, W. R. Mark, P. Hanrahan. Ray Tracing on

Programmable Graphics Hardware. ACM Transactions on Graphics,

2002.

[13] Greg Humphreys, Mike Houston, Ren Ng. Chromium: A Stream

Processing Framework for Interactive Rendering on Clusters. Sigh-

Graph 2002.

[14] Marc Olano, Trey Greer. Triangle Scan Conversion using 2D

Homogeneous Coordinates. Graphics Hardware, 2000.

[15] Michael D. McCool, et al. Incremental and Hierarchical Hilbert

Order Edge Equation Polygon Rasterization. Proceedings Graphics

Hardware 2001.

[16] J. McCorkmack, et al. Neon: A (Big) (Fast) Single-Chip 3D

Workstation Graphics Accelerator. WRL Research report 1998.

[17] Green, N. et al. Hierarchical Z-Buffer Visibility. Proceedings of

SIGGRAPH 1993.

[18] S. Morein. ATI Radeon Hyper-z Technology. In Hot3D Proceed-

ings - Graphics Hardware Workshop, 2000.

[19] US20030038803: System, Method, and apparatus for compres-

sion of video data using offset values. ATI Technologies.

[20] Ziyad S. Hakura, Anoop Gupta. The Design and Analysis of a

Cache Architecture for Texture Mapping. ISCA 1997.

[21] Homan Igehy, et al. Prefetching in a Texture Cache Architec-

ture. Proceedings of the 1998 Eurographics/SIGGRAPH Workshop

on Graphics Hardware

[22] Se-Jeong Park et al. A reconfigurable multilevel parallel texture

cache memory with 75-GB/s parallel cache replacement bandwidth.

Solid-State Circuits, IEEE Journal of May 2002.

[23] Liu Ren, et al Object Space EWA Surface Splatting: A Hard-

ware Accelerated Approach to High Quality Point Rendering.

EUROGRAPHICS 2002.

[24] EXT_texture_compression_s3tc. http://oss.sgi.com/projects/

ogl-sample/registry/EXT/texture_compression_s3tc.txt

[25] Simon Fenneyy. Texture Compression using Low-Frequency

Signal Modulation. Graphics Hardware (2003).

[26] Stanford University CS488a Fall 2001 Real-Time Graphics

Architecture. Kurt Akeley, Path Hanrahan.

[27] Lars Ivar Igesund, Mads Henrik Stavang. Fixed function pipe-

line using vertex programs. November 22. 2002

[28] Joel Emer, et al. Asim: A Performance Model Framework. IEEE

Computer, February 2002 (Vol. 35, No. 2).

[29] Microsoft Meltdown 2003, DirectX Next Slides. http://www.mi-

crosoft.com/downloads/details.aspx?FamilyId=3319E8DA-6438-

4F05-8B3D-B51083DC25E6&displaylang=en

[30] ARB Vertex Program extension: http://oss.sgi.com/projects/ogl-

sample/registry/ARB/vertex_program.txt

[31] ARB Fragment Program extension: http://oss.sgi.com/projects/

ogl-sample/registry/ARB/fragment_program.txt.

[32] GPGPU http://www.gpgpu.org/

[33] K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding the

Efficiency of GPU Algorithms for Matrix-Matrix Multiplication.

Graphics Hardware 2004.

[34] Daniel Horn, Mike Houston, and Pat Hanrahan. ClawHMMer: A

Streaming HMMer-Search Implementation. Supercomputing 2005.

[35] GPUBench: http://graphics.stanford.edu/projects/gpubench/

[36] Jeremy W. Sheaffer, Kevin Skadron, David P. Luebke. Studying

Thermal Management for Graphics-Processor Architectures. ISPASS

2005.

[37] Mesa 3D Graphics Library. http://www.mesa3d.org/

http://www.beyond3d.com/
http://discuss.microsoft.com/archives/
http://graphics.stan-/
http://oss.sgi.com/projects/
http://oss.sgi.com/projects/ogl-
http://oss.sgi.com/projects/
http://www.gpgpu.org/
http://graphics.stanford.edu/projects/gpubench/
http://www.mesa3d.org/

