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Abstract 

The present work presents a cycle-level execution-driven 

simulator for modern GPU architectures. We discuss the sim- 

ulation model used for our GPU simulator, based in the con- 

cept of boxes and signals, and the relation between the timing 

simulator and the functional emulator. The simulation model 

we use helps to increase the accuracy and reduce the number 

of errors in the timing simulator while allowing for an easy 

extensibility of the simulated GPU architecture. We also intro- 

duce the OpenGL framework used to feed the simulator with 

traces from real applications (UT2004, Doom3) and a per- 

formance debugging tool (Signal Trace Visualizer). The pre- 

sented ATTILA simulator supports the simulation of a whole 

range of GPU configurations and architectures, from the 

embedded segment to the high end PC segment, supporting 

both the unified and non unified shader architectural models. 

 
 

1. Introduction 

We have developed a generic GPU microarchitecture con- 

taining most of the advanced hardware features seen in today’s 

major GPUs. We have liberally blended techniques from all 

major vendors and the research literature [26], producing a 

microarchitecture that closely tracks today’s GPUs without 

being an exact replica of any particular product available or 

announced. We have then implemented this microarchitecture 

in full detail in a cycle-level, execution-driven simulator. In 

order to feed this simulator, we have implemented an OpenGL 

framework comprised by a library, a driver and a capture tool. 

The OpenGL framework allows to run traces from modern 

graphic applications (i.e. games) like UT2004 and Doom3 in 

our simulator. Our microarchitecture and simulator are versa- 

tile and highly configurable and can be used to evaluate multi- 

ple configurations: high-end PC GPUs [1] to embedded GPUs 

[2] for mobile systems. 

The remainder of this paper is organized as follows: Sec- 

tion 2 describes the rendering algorithm and the microarchi- 

tecture of a GPU as implemented by the ATTILA simulator. 

Section 3 discusses the simulation model and the structure of 

the different simulator components. Section 4 introduces our 

OpenGL framework, used to feed the simulator with traces 

from real graphic applications. In section 5 a simple experi- 

mental test case is presented. Finally sections 6 and 7 present 

related work, conclusions and future work. 

 

2. ATTILA Architecture 

 The 3D Rendering Algorithm 

The rendering algorithm implemented in modern GPUs is 

based on the rasterization of shaded polygons on a color 

buffer, using a Z buffer to solve the visibility problem. GPUs 

are based on the rasterization of triangles because the simplic- 

ity and efficiency of hardware triangle rasterizers. Therefore 

all surfaces forming the scene to render are transformed into 

triangles (tesselation) in an offline preprocess. Coplanar four 

vertex polygons, named quads in OpenGL, are supported as 

two triangles. Some GPUs also support the tesselation of high 

order surfaces (Bezier, N-Patches) using specific hardware. 

The rendered image, stored in the framebuffer, a 2D 

matrix array, contains the properties of all the visible parts in 

the rendered scene from the view point of a defined observer. 

In most cases the stored property is the surface color. The 

properties of the rendered surfaces are calculated at two 

points: at the vertices of the triangles that form the surface and 

at the fragments generated by the rasterization of those trian- 

gles. Early graphic processors performed most of the compu- 

tation, mostly related to the illumination from a number of 

light sources, at the vertex level with the fragment properties 

being linearly interpolated from the vertex properties (Goraud 

shading). With the modern GPUs high fragment processing 

power most of those computations have moved to the frag- 

ment level (Phong shading). At the vertex level remain the 

transformations related to geometry and physics. 

The 3D rendering algorithm can be defined using the 

stream programming model [11] in terms of streams and ker- 

nels. The input stream is a list of vertices and their input prop- 

erties (position, color, texture coordinates), named attributes in 

OpenGL. The vertex stream, named batch in OpenGL, can be 

indexed to enable reusing the computation of vertices from 

adjacent triangles. The input vertex stream is fed into a shader 

kernel executing the vertex shader: a program that transforms 
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(coordinate system convertion, lighting, etc.) the properties of 

the input vertices. The transformed vertex stream is feed into 

a kernel that assembles vertices as triangles. This triangle 

stream passes through geometry related kernels (clipping, face 

culling, triangle setup) that generate or remove triangles and 

prepare the triangle stream to be processed by the rasterizer. 

The rasterizer or fragment generator kernel pieces the triangles 

into small fragments equivalent to a pixel (an element in the 

framebuffer) with fragment properties copied or linearly inter- 

polated from the input triangle vertex properties. 

The fragment stream is then processed by a number of 

fragment kernels that remove non visible fragments and com- 

pute the final fragment attributes. The fragment test kernels 

usually implemented in the rendering algorithm are: scissor 

test, alpha test, stencil test and z test . Scissor removes trian- 

gles outside a defined rectangle window. Alpha removes 

transparent fragments based on a defined constant and the 

fragment color alpha component. Stencil removes fragments 

based on a per pixel mask, the stencil buffer. The stencil test is 

performed comparing a defined reference value against the 

value stored for the corresponding fragment pixel. The per 

pixel stencil value is optionally updated based on the result of 

the stencil and z tests applying different update functions 

(increment, decrement, etc.). The depth (z) test compares the 

fragment depth against the depth value of the last fragment 

drawn over the pixel, as stored in the depth (z) buffer. 

Depending on the selected compare function fragments behind 

(smaller z), ahead (larger z) or at the same depth (equal z) are 

allowed to flow to the next procesing kernels or discarded. 

Final fragment properties are computed by a shader kernel 

similar to the vertex shader kernel. Fragment shaders (and in 

recent implementations vertex shaders) are allowed to use 

non-streaming data, reading from one, two or three dimen- 

sional buffers named textures, for their computations. 

The processing order of the test and fragment shader ker- 

nels isn’t fixed. Scissor test can be performed before shading, 

alpha test must be performed after shading. Stencil and depth 

can be performed before shading if the fragment depth isn’t 

modified by the fragment shader and alpha test is disabled. 

 

3. Conclusions 

We have presented an highly configurable simulator for a 

modern GPU architecture that is implemented using the box 

and signal simulation model. The simulated architecture 

implements the unified shader architecture that will be present 

in future GPUs. We have developed an OpenGL framework 

that allows to capture and simulate trace from real graphic 

applications, games, as Doom3 and UT2004. The simulator 

generates a large amount of statistic data and data flow infor- 

mation that can be used to evaluate different microarchitecture 

implementations for all the pipeline stages. 

We will increase OpenGL framework to support more 

games. We are also working on a backend for the glSlang 

compiler. In the future we will start a Direct3D framework. 

We plan to upgrade the shader to Shader Model 3.0 and glS- 

lang functionality level implementing branching and predica- 

tion. We will implement additional features from modern 

GPUs: texture compression methods [25], render to texture, 

floating point buffers and textures; color compression; double 

rate Z and stencil; double sided stencil; supersampling and 

multisampling based antialiasing [23]. 
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